
Digital Object Identifier (DOI) 10.1140/epjc/s2004-02026-9
Eur. Phys. J. C 39, 245–248 (2005) THE EUROPEAN

PHYSICAL JOURNAL C

Comments on spin operators and spin-polarization states
of 2 + 1 fermions
S.P. Gavrilov1,a, D.M. Gitman2,b, J.L. Tomazelli1
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Abstract. In this brief article we discuss spin-polarization operators and spin-polarization states of 2 + 1
massive Dirac fermions and find a convenient representation by the help of 4-spinors for their description. We
stress that in particular the use of such a representation allows us to introduce the conserved covariant spin
operator in the 2+1 field theory. Another advantage of this representation is related to the pseudoclassical
limit of the theory. Indeed, quantization of the pseudoclassical model of a spinning particle in 2 + 1
dimensions leads to the 4-spinor representation as the adequate realization of the operator algebra, where
the corresponding operator of a first-class constraint, which cannot be gauged out by imposing the gauge
condition, is just the covariant operator previously introduced in the quantum theory.

I

The 2 + 1-spinor field theory [1] has attracted in recent
years great attention due to various reasons, e.g., because
of non-trivial topological properties, and due to the possi-
bility of the existence of particles with fractional spins and
exotic statistics (anyons), having probably applications to
the fractional Hall effect, high-Tc superconductivity and so
on [2]. In many practical situations the quantum behavior
of spin 1/2 fermions (from now on simply called fermions)
in 2+1 dimensions can be described by the corresponding
Dirac equation with an external electromagnetic field. The
main difference between the relativistic quantum mechan-
ics of fermions in 3 + 1 and in 2 + 1 dimensions is related
to the different description of spin-polarization states. It is
well known that in 3 + 1 dimensions there exist two mas-
sive spin 1/2 fermions, the electron and its corresponding
antiparticle, i.e., the positron. Both the electron and the
positron have two spin-polarization states. In 2+1 dimen-
sions there exist four massive fermions: two different types
of electrons and two corresponding positrons. In contrast
to the situation in 3 + 1 dimensions, each particle in 2 + 1
dimensions has only one polarization state. We recall that
constructing the covariant and conserved spin operators for
the 3+1 Dirac equation in an external field is an important
problem as regards finding exact solutions of this equation
and specifying the spin-polarization states [3]. Here, there
do not exist universal covariant conserved spin operators
which relate to any external field; for each specific con-
figuration of the external field one has to determine such
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operators [4]. At first glance, this problem does not exist
in 2 + 1 dimensions, since each fermion has only one spin-
polarization state. Nevertheless, the spin (or spin magnetic
momentum) as a physical quantity in 2+1 dimensions does
exist, and therefore, the corresponding operators do exist.
One can see, by solving the Dirac equation in 2+1 dimen-
sions, that knowledge of such spin operators is very useful
for finding physically meaningful solutions. Moreover, it
turns out that in 2+1 dimensions the appropriate spin op-
erator serves at the same time as a particle species operator
whilst its explicit expression is useful for the interpretation
of the theoretical constructions. In this brief article, we
discuss spin-polarization operators and spin-polarization
states of 2+1 massive Dirac fermions and some convenient
representations for their description.

II

It is well known that in 2+1 dimensions (as well as in any
odd number of dimensions) there exist two inequivalent sets
(representations) of gamma matrices. In fact, the proper
orthochronous Lorentz group L↑

+, in a pseudo-euclidean
space M, can be identified with the SL(2, R) group of
real unimodular 2 × 2 matrices, associated to linear trans-
formations of unity determinant in a real two-dimensional
vector space [5]. Considering the space M of real hermitian
matrices spanned by the vector basis {τα},

τ0 = 1 , τ1 = σ3 , τ2 = σ1 ,

where the σ1,3 belong to the set of Pauli matrices σi, i =
1, 2, 3, one can associate to each vector in this space amatrix
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in M via the isomorphism

L↑
+ ≈ SL(2, R)/Z ,

where Z denotes the center {I,−I} of the SL(2, R) group,
which constitutes the (real) spinor representation of the
Lorentz group.

An operator in SL(2, R) can be represented by a matrix
in the hermitian basis {τα} or simply by a matrix formed
by the product of any two elements of such a basis as,
for example, the anti-hermitian matrix τ3 = τ1τ2 in the
SL(2, R) associatedalgebra.Thenew(non-hermitian)basis
{τ1, τ2, τ3} of SL(2, R) is also the set of generators of the
real Clifford algebra [6]

[τi, τj ]+ = 2gi j ; i, j = 1, 2, 3 ,

where g is the metric tensor of a pseudo-euclidean space
of signature (+,+,−).

The complexifications

Γ 0
s = τ1 = σ3 , Γ 1

s = τ3 = iσ2 , Γ 2
s = −siτ2 = −siσ1 ,

s = ±1 , (1)

of the above Clifford algebra give rise to the algebra of
different representations for Dirac gamma matrices, labeled
by the subscript s = ±1.

As a consequence, there exist, respectively, two differ-
ent Dirac equations and two different Lagrangians for the
corresponding spinor fields. If an external electromagnetic
field is present, then the particle (ζ = 1) and antiparticle
(ζ = −1) with the charges ζe, e > 0 respectively obey
the Dirac equations in which the operator i∂µ has to be
replaced by Pµ = i∂µ−ζeAµ (x), where theAµ (x) are elec-
tromagnetic potentials. Thus, in fact, in 2 + 1 dimensions
we have four massive fermions (let us call the two different
types of fermions up and down particles) and respectively
four types of solutions of the 2+1 Dirac equation (2-spinors
Ψ (ζ,s) (x)):

(Γµ
s Pµ −m)Ψ (ζ,s) (x) = 0 , x = (xµ) , µ = 0, 1, 2 ,

Pµ = i∂µ − ζeAµ (x) , s, ζ = ±1 . (2)

In such a picture (and in stationary external fields that do
not violate the vacuum stability), the only physical states
are those from the upper energy branch, and only such
states can be used in second quantization [11].

III

In order to define a spin magnetic momentum of the 2 +
1 massive fermions let us set the external field to be a
uniform constant magnetic field. In 2 + 1 dimensions, the
magnetic field has only one component F21 = −F12 = B =
const. The sign of B defines the “direction” of the field, the
positive B corresponds to the “up” direction whereas the
negative B corresponds to the “down” direction. In such
a background, (2) can be reduced to the stationary form

H(ζ,s)Ψ (ζ,s)
n (x) = ε(ζ,s)

n Ψ (ζ,s)
n (x) ,

H(ζ,s) = −Γ 0
s Γ

k
s Pk + Γ 0

sm,

Ψ (ζ,s) (x) = exp
(
−iε(ζ,s)x0

)
Ψ (ζ,s) (x) ,

ε(ζ,s)
n > 0 , x =

(
x1, x2) . (3)

Asusual,wepass to the squaredequation throughtheansatz

Ψ (ζ,s) (x) =
[
Γ 0

s ε+ Γ k
s Pk +m

]
Φ(ζ,s) (x) , (4)

to obtain the following equation:
[
ε2n −D(ζ,s)

]
Φ(ζ,s)

n (x) = 0 ,

D(ζ,s) = m2 + P2 +
i
4
ζeFµν [Γµ

s , Γ
ν
s ]

= m2 + P2 − sζeBσ3 ,

P =
(
P 1, P 2) . (5)

The 2-component spinors Φ(ζ,s)
n (x) may be chosen in the

form Φ(ζ,s) (x) = f
(ζ,s)
n (x) υ , where f

(ζ,s)
n (x) are some

functions and υ some constant 2-component spinors that
classify the spin-polarization states. We select υ to obey
the equation σ3υ = υ. One can see that selecting υ to be
the eigenvector of σ3 with the eigenvalue −1, we do not
obtain new linearly independent spinors Ψ (ζ,s)

n (x). This is
a reflection of the well known fact (see e.g. [7]) that massive
2+1 Dirac fermions have only one spin-polarization state.
This reflects the fact that, in 2 + 1 dimensions, the mass
terms in the corresponding Lagrangians for the spinor fields
Ψ (ζ,s) arenot invariantunderaparity transformation,which
consists in the inversion of one of the space coordinate axes,
say, the x-axis.

In fact, under the transformation

P : x → x′ = (−x, y) ,

the spinor Ψ (ζ,+)(x), which satisfies the above Dirac equa-
tion for fermions of mass m, transforms as

Ψ (ζ,+)(x) → Ψ ′(ζ,−)(x′) = PΨ (ζ,+)(x) ,

where the components of the spinor Ψ ′(ζ,−) obey the equa-
tions

(P0Ψ
′(ζ,−)
1 (x′) + P1Ψ

′(ζ,−)
2 (x′) + iP2Ψ

′(ζ,−)
2 (x′))

= mΨ ′(ζ,−)
1 (x′) ,

(−P0Ψ
′(ζ,−)
2 (x′) − P1Ψ

′(ζ,−)
1 (x′) + iP2Ψ

′(ζ,+)
1 (x′))

= mΨ ′(ζ,+)
2 (x′) ,

in any Lorentz reference frame. Hence, we can verify that for

Ψ ′(ζ,−)
1 (x′) = Ψ

(ζ,+)
2 (x) and Ψ ′(ζ,−)

2 (x′) = −Ψ (ζ,+)
1 (x) ,

i.e.,

Ψ ′(ζ,−)(x′) = Γ 1
+Ψ

(ζ,+)(x) ,
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we obtain a Dirac equation for a particle of mass −m.
Therefore, we associate to the operator P which acts on
Ψ (ζ,+)(x) the gamma matrix Γ 1

+. We are thus led to the
conclusion that in order to get new solutions of the Dirac
equation from the corresponding Ψ (ζ,s)(x) ones, besides an
internal transformation such as the above parity transfor-
mation, it is necessary to perform the change m ↔ −m;
these solutions must indeed be related to the solutions
Ψ (ζ,−s)(x), due to the existence of only two inequivalent
representations of Dirac gamma matrices.

In a weak magnetic field it follows from (5) that

ε(ζ,s)
n = ε(ζ,s)

n

∣∣∣
B=0

− µ(ζ,s)B ,

µ(ζ,s) =
sζe

2

√
m2 +

(
f

(ζ,s)
n

)−1
P2f

(ζ,s)
n

. (6)

We have to interpret µ(ζ,s) as the spin magnetic momentum
of 2 + 1 fermions. Thus in 2 + 1 dimensions, we have

signµ(ζ,s) = sζ . (7)

One ought to remark that this result matches with
the conventional description of spin polarization in 2 + 1
dimensions. Considering the total angular momentum in
the rest frame (see, for example, [7,9]), one can define the
operators S(s)

0 of spin projection on the x0-axis,

S
(s)
0 =

i
4

[
Γ 1

s , Γ
2
s

]
=
s

2
σ3 . (8)

In the non-relativistic limit we obtain from (4) and (6)

µ(ζ,s) =
sζe

2m
, Ψ (ζ,s)

n (x) = 2mΦ(ζ,s)
n .

In such a limit the Dirac spinors Ψ (ζ,s)
n (x) are eigen-

functions of the operators (8),

S
(s)
0 Ψ (ζ,s)

n (x) =
s

2
Ψ (ζ,s)

n (x) .

Thus, one can consider

M (ζ,s) =
ζe

m
S

(s)
0 (9)

as the spin magnetic momentum operator. However, the
operators S(s)

0 are not covariant and are not conserved
in the external field. Below we represent a conserved and
covariant spin operator for 2 + 1 massive fermions.

IV

Let us use a 4-component spinor representation for the
wave functions to describe particles in 2 + 1 dimensions.
Namely, let us introduce 4-component spinors of the form

ψ(ζ,+1) (x) =
(
Ψ (ζ,+1) (x)

0

)
,

ψ(ζ,−1) (x) =
(

0
σ1Ψ (ζ,−1) (x)

)
. (10)

These 4-component spinors are representatives of 2-com-
ponent spinors Ψ (ζ,+1) (x) and Ψ (ζ,−1) (x). At the same
time it is convenient to use three 4 × 4 matrices γ0, γ1,
and γ2 taken from the following representation [8] of 3 + 1
gamma matrices:

γ0 =
(
Γ 0

+1 0
0 −Γ 0

−1

)
, γ1 =

(
Γ 1

+1 0
0 −Γ 1

−1

)
,

γ2 =
(
Γ 2

+1 0
0 Γ 2

−1

)
, γ3 =

(
0 I

−I 0

)
. (11)

In the new representation, the 4-component spinors (10)
obey the Dirac equation of the following form:

(γµPµ −m)ψ (x) = 0 , Pµ = i∂µ − ζeAµ (x) ,

x = (xµ) , µ = 0, 1, 2 . (12)

In fact, this equation can be considered as a result of a
partial dimensional reduction of the 3 + 1 Dirac equation.
Stationary solutions of (12) can be expressed via solutions
Φ

(ζ,s)
n (x) of (5) as follows:

ψ(ζ,s)
n (x)

= exp
(
−iε(ζ,s)

n x0
) [
γ0ε(ζ,s)

n + γkPk +m
]
ϕ(ζ,s) (x) ,

x =
(
x1, x2) ,

ϕ(ζ,+1) =
(
Φ(ζ,+1)

0

)
, ϕ(ζ,−1) =

(
0

σ1Φ(ζ,−1)

)
,

ε(ζ,s)
n > 0 , (13)

whereas the energy spectrum is the same as for (5). One
can easily see that the 4-spinors ϕ(ζ,s) are eigenvectors of
the operator Σ3 with the eigenvalues s being the parti-
cle species:

Σ3ϕ(ζ,s) = sϕ(ζ,s) , Σ3 = iγ1γ2 =
(
σ3 0
0 σ3

)
. (14)

The operator Σ3 commutes with the squared Dirac equa-
tion. This fact allows us to find a spin integral of motion for
the Dirac equation (12). Such an integral of motion reads

Λ =
HΣ3 +Σ3H

4m
, H = −γ0γkPk + γ0m. (15)

In the case under consideration, we obtain

Λψ(ζ,s) =
s

2
ψ(ζ,s) , Λ =

1
2
γ0Σ3 =

1
2

(
I 0
0 −I

)
. (16)

V

Now we can consider 2 + 1 QFT of the spinor field that
obeys (12). Such a QFT can be obtained by a standard
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quantization of the corresponding Lagrangian. Here the
field operators have the form

ψ̂ (x) =
(
Ψ̂+1 (x)
σ1Ψ̂−1 (x)

)
, (17)

where the 2-component operators Ψ̂s (x) describe particles
of the s-species. Decomposing the field (17) into the solu-
tions (13), we obtain four types of creation and annihilation
operators: as,n and a+

s,n which are operators of particles
(ζ = +1) and bs,n and b+s,n which are operators of antipar-
ticles (ζ = −1). Thus, in the QFT under consideration all
the types of 2 + 1 fermions appear on the same footing.

In the QFT one can define the second-quantized opera-
tor Λ̂ that corresponds to the operator Λ of the field theory,

Λ̂ =
e

m

∫
ψ̂†Λψ̂dx . (18)

It is easily to verify that such an operator is a scalar under
2 + 1 Lorentz transformations and is conserved in any
external field. We call the operator Λ̂ the spin magnetic
polarization operator. One can easily see that this operator
is expressed via charge operators Q̂s of 2 + 1 fermions
as follows:

Λ̂ =
1

2m

(
Q̂+1 − Q̂−1

)
, (19)

where

Q̂s =
e

2

∫ [
Ψ̂ †

s , Ψ̂s

]
dx = e

∑
n

(
a+

s,nas,n − b+s,nbs,n

)
,

s = ±1 . (20)

Remark that the eigenvalues of the operator Λ̂ in the one-
particle sector coincide with the spin magnetic momenta
µ(ζ,s) = sζe/2m of the 2 + 1 fermions in the rest frame.

We stress that in particular the use of a spinor represen-
tation with more than 2-components allows us to introduce
the conserved covariant spin operator in the 2+1 field the-
ory. There is another argument (which is related to the first
quantization procedure) in favor of such representations,
discussed below.

VI

It was demonstrated in [10] that relativistic quantum me-
chanics of all the massive 2 + 1 fermions can be obtained
in the course of first quantization of a corresponding pseu-
doclassical action where the particle species s is not fixed.
General statevectorsare16-componentcolumns.Thestates
with a definite charge sign ζ can be described by 8-compo-
nent columns φζ . The operators of space coordinates X̂k

and momenta P̂k act on these columns as

X̂k = xkI , P̂k = p̂kI , p̂k = −i∂k .

Here, I is the 8 × 8 unit matrix. Besides this, the spin
degrees of freedom are related to the operators

ξ̂1 =
i
2

antidiag
(
γ1, γ1) , ξ̂2 =

i
2

diag
(
γ2, γ2) .

The operator of a conserved first-class (ungauged) con-
straint has the form

t̂ = θ̂ − Ŝ , θ̂ = diag (Λ,Λ) , Ŝ = 2iξ̂2ξ̂1 .

To fix the gauge at the quantum level, one imposes ac-
cording to Dirac the condition t̂φζ = 0 on the physical state
vectors. At the same time we choose φζ to be eigenvectors
of the matrix θ̂,

θ̂φζ,s =
s

2
φζ,s .

We see that in the first-quantized theory under con-
sideration the operator Ŝ acts as the operator Λ in the
quantum mechanics of item IV,

Ŝφζ,s =
s

2
φζ,s .

Thus, we can interpret the operator Ŝ as a spin operator.
Finally, there exists a relation between the representa-

tions of one-particle quantum states in terms of φζ,s and
ψ(ζ,s). Such a relation reads

φζ,+1 (x) =
1√
2

(
ψ(ζ,+1) (x)
γ0ψ(ζ,+1) (x)

)
,

φζ,−1 (x) =
1√
2

(
ψ(ζ,−1) (x)
γ0ψ(ζ,−1) (x)

)
.

One can easily demonstrate that these two representa-
tions are physically equivalent.
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